

High Speed Wire Bond Inspection

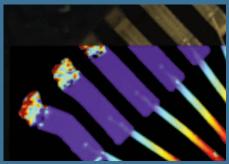
1µm height resolution at scanning width of 35 mm

WHY IS OPTICAL INSPECTION OF WIRE BOND CRITICAL?

The reliability of an integrated circuit in a real application is dependent on the quality of its inter-connections and bonding, namely – wire and ball bonding. The wire bond inspection is a combination of mechanical, electrical and optical inspection. There are certain defects which cannot be identified during the mechanical and electrical inspections such as height of the wire, distances between wires, missing wires occurring during multiple bonding, over and under bonding. Apart from this, the contact methods for quality inspection lead to electrostatic/physical damage of the wires. A 2D and 3D optical inspection not only provides reliable data of the wires but also inspects the solder quality and other components in the vicinity of the wires.

WHY A STEREO LINE SCAN APPROACH IS THE RIGHT APPROACH FOR WIRE BOND INSPECTION?

Manual inspection is quite evident in the wire bond industry. Some manufacturers use visual microscopes for 2D quality inspection along with X-ray sensors or laser projection methods for 3D inspection. A stereoscopic technology views the wire bond from different angles, providing a real 3D perspective. Furthermore, a line scan approach provides new opportunities for real inline inspection of wire bonds.

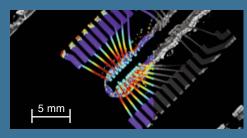

HIGHLIGHTS FROM CHROMASENS

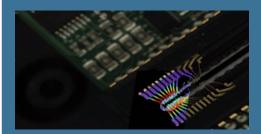
Resolution: The 3DPIXA with an optical resolution of 5 μ m in two dimensional colour imaging provides three dimensional height resolution of up to 1 μ m. The high resolution being a pre-requisite for wire bonds of 1 mil, Chromasens also provides a range of cameras optimized for wire bond inspection of wires with higher thicknesses. Wire of thickness lower than 1 mil can also be tested.

Lighting: The lighting for 3D wire bond inspection is critical due to the shape and geometry of the wires. 2D image provides a top-view of the wires which is not enough for extracting 3D data from the wire. Special lighting from Chromasens GmbH helps to achieve better 3D results.

Algorithms: Viewing the wire from different angles also leads to a parallax error. The specially designed high speed 3D algorithms form a good basis for identifying the wires within the stereo images. This results in a good correlation, required for calculating the height of wire bonds.

3D - 1 μ m height resolution 2D - 5 μ m optical resolution

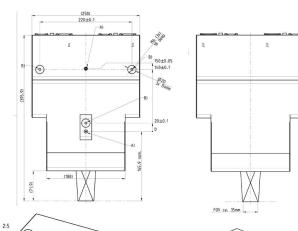

Pseudo-color representation of height map

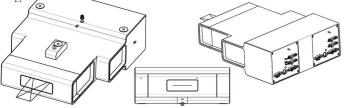

High resolution 2D image

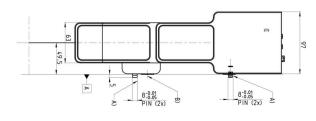
3D point cloud of wire bonds

Grey scale images representing the height information

3D point cloud representation depicting selected regions in pseudo-color

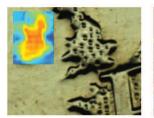

3DPIXA Stereo Line Scan Camera


PRECISION IN HIGH-RESOLUTION 3D AND COLOR

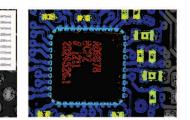

DIMENSIONS (IN MM) OF 5 μm "D" DUAL VERSION

CAMERA SPECIFICATIONS

Camera	Stereo camera with lens		
	factory calibrated		
Sensor	Tri-linear CCD scan line		
Number of pixels	max. 3500 (Compact)		
	max. 7300 (Dual)		
Active pixel size	10 µm x 10 µm		
Line rate	up to 21,2 kHz for Compact		
	up to 60 kHz for Dual		
Interfaces	CameraLink Medium, Base		
	Power supply		
	External I/O		
	RS 232		
Software Chromasens 3D	API for calculating 3D data		
	from stereo images on GPU		
	Nvidia graphic boards		
Software output	Height map 16 Bit		
	Rectified color image 3x8 Bit		
	3D point cloud		
Additional accessories	Corona II illumination		
Supported software	LabView (National Instruments)		
	Halcon (MVTec)		
	MIL (Matrox)		



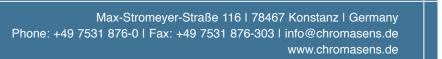
APPLICATIONS


METAL SURFACES

WIRE BONDS

BALL GRID ARRAY

PCB


3DPIXA CONFIGURATIONS

3DPIXA Model CP000470-	Optical Resolution (µm/pixel)	FOV max (mm)	Height Resolution* (µm)	Typical Height Range* (mm)	Free Working Distance (mm)	Maximum Speed (m/s)
C01-015-0040	15	40	3	2.5	99.6	0.31
C01-030-0105	30	105	6	10	173.6	0.63
D01-005-0035	5	35	1	0.7	71.9	0.1
D01-015-0105**	15	105	3	2.5	229	0.31
D01-030-0210	30	215	6	10	383.3	0.63
D01-070-0500	70	500	10	52	796.9	1.45

* height range and height resolution depend on object surface

** the model number for D01-015-0105 is CP000520

NOTE: Compact cameras are denoted with model numbers – C01. Dual cameras are denoted with model numbers – D01. Please take into consideration a tolerance of +/- 3 mm to the Free Working Distance mentioned above.

